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Introduction

It is often difficult to manually program even
simple skills for robots: commanding a robot
requires sending a certain precise current to
each motor, which is especially complicated
when a set of motors within an arm must
work in unison to achieve a complicated
movement. Learning from Demonstration
(LfD) is a promising direction of research for
robots to learn real-world skills directly from
observing demonstrations. LfD allows non-
expert operators to program skills simply by
demonstrating them many times. Further-
more, these learned skills are more general.
they are able to handle slight variations of
a task; such as if an object to be picked is
slightly misplaced.

However, many contemporary LfD ap-
proaches train skills that are unable to target
a specific goal from many possible choices.
For instance, such approaches are unable
to target a specific button within a grid. In-
stead, these approaches would train a dif-
ferent skill for every button. This requires
a lot of data (approximately 30 minutes of
demonstration data per skill [Zhang et al.,
2017]) that is usually infeasible for real-
world situations.

To combat this issue, | helped propose a
method that learns skills that are parameter-
ized by a goal-parameter (7) such that alter-
ing 7 correctly alters the skill. In the button-
pressing scenario, instead of training a new
skill for each button, we train one general
skill that adapts itself depending on where
the button is (7), much like how a human
might learn this skill. This enables a robot
to press a new button (that it hasn’t seen in
demonstrations) simply by being given the
button’s goal-parameter.

This work directly builds on recent suc-
cessful approaches to LfD. Zhang et al.

[2017] and Levine et al. [2016] used Deep
Neural Networks (DNN'’s) to approximate
functions mapping from a robot’s sensor in-
put to the expert’s action. These DNN'’s are
able to learn complicated real-world tasks
(such as block-stacking) from demonstra-
tions. | proposed and helped implement
a novel DNN architecture that builds di-
rectly on this success by adding a goal-
parameterization (7) variable as an input to
Zhang et al. [2017]'s DNN architecture. |
then designed and helped run experiments
on a variety of simple tasks and representa-
tions for 7 to evaluate our method'’s perfor-
mance empirically.

Methodology

In an effort to evaluate our algorithm, | de-
signed several experiments in three sepa-
rate domains: a 2D simulation of the button-
pushing task, a 3D button-pushing task with
a physical robotic arm and finally a 3D peg-
insertion task with a different robot arm.

Button Pressing

2D Button Simulation Peg Insertion

Figure 1: Views from our experimental setups

2D Button Simulation
Our experiments in this domain aimed to an-
swer the following questions:

1. How does our method’s performance
compare to the state-of-the-art?

2. How does the representation chosen
for the goal-parameterization (r) affect
our method’s performance?

3. How does our method’s performance
change with the number of different
goal-parameters (values for ) provided
during training?

To answer these questions, | designed
a 3x3 grid of blue squares representing
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buttons and a black circle representing the
agent, shown in Figure 1. | then collected
100 expert trajectories for each square
where the agent began at a random po-
sition along the right wall and followed a
randomized path to the specific square. |
helped train our DNN on random subsets of
squares in our grid. For every random sub-
set, we evaluated our DNN’s median perfor-
mance on 100 trials for each button. A trial
was counted as a success only if the agent
stops at the correct blue square.

| helped perform the above experiment
for various versions of our DNN. One
version did not take 7 as an input parameter
and was thus equivalent to the state-of-the-
art architecture from Zhang et al. [2017].
Another version used an unstructured
representation for the goal-parameter to
study how structure in the choice of rep-
resentation for 7 affects our performance.
Specifically, it used a one-hot vector where
a goal corresponded to a randomly-chosen
index of a nine-dimensional vector (as there
are nine possible goals). Finally, | tested
version of our model that used the struc-
tured representations for 7, specifically the
button’s pixel location within the image as
7 or its row-column index pair [for example
(1,1),(1,2), etc.].

3D Robot experiments

In this domain, | aimed to investigate
whether our method would work robustly on
real-world robotic tasks. | used a KUKA
robot arm to press buttons on a 3D, 4 x 4
button panel pictured in Figure 1. Similar
to an experiment from our 2D Button Sim-
ulation Section, | parameterized our button-
grid with a row/column tuple of the button’s
location on the grid. For training, | col-
lected 100 trials of the robot’s end-effector
beginning at a random position and follow-
ing a straight line to the specified button.
The end-effector’s final position was varied

with noise distributed normally such that the
robot would press the button differently each
time.

For this experiment, | used specific sub-
sets of buttons that had been found to gen-
eralize well in our two-dimensional simula-
tion. After having trained our DNN on the
data, | evaluated this learned policy by aver-
aging three attempts of the robot attempting
to press the button.

| helped repeat the same experiment on
a peg-insertion task (depicted in Figure 1)
to study whether our method can perform
a task that requires significantly more pre-
cision.

Results
2D Button Simulation
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Figure 2: Results from the 2D simulation domain

From Figure 2 above, one can infer the
following answers to questions posed in the
2D Button Simulation Methodology Section:

1. Our method performs significantly bet-
ter than the existing state-of-the-art.
The ’no tau’ curve’s success percent-
age drops to a relatively consistent 0
for any number of goals greater than
1. This is almost certainly because the
state-of-the-art method doesn’t take r
as an input and thus cannot target spe-
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cific goals when trained on more than
one goal. Instead, it learns to average
between the goals seen during training.

2. The representation chosen for  affects
our DNN’s performance rather signif-
icantly. Both the row/column index
parameterization (index tau) and pixel
parameterization (pixel tau) achieved
much higher success percentages
when trained on fewer goals than
the one-hot vector parameterization
(onehot). This is probably because t
varies inconsistently for the one-hot
parameterization and thus the DNN is
only able to target goals already seen
during training (hence, the observed
straight-line trend).

3. Regardless of the structured param-
eterization chosen, our DNN’s perfor-
mance improved with the number of
goals seen during training. For the in-
dex and pixel parameterizations, the
average success percentage reached
100 after training on just 4 of the 9 pos-
sible goals in the grid.

3D Robot experiments
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Figure 3: Results from our robot experiments
Figure 3 illustrates that our DNN is

able to solve both targeted button-pressing
and peg-insertion tasks remarkably well on

robots. For both tasks, our DNN is able
to learn to generalize to target all possible
goals without the need to train on all 9 goals.
Interestingly, our method performed better
on the peg-insertion task even though it re-
quired more precision and had a smaller
amount of training data. | hypothesize that
this is because there was more noise in
the robot’s motion for the button-pressing
task, leading to a more imprecise policy that
would narrowly miss specific buttons. In-
deed, we observed this qualitatively.

Future Work

| hope to deepen this line of work in the
future. Specifically, | hope to extend our
idea of goal parameterization to other LfD
frameworks; such as that adopted by [Ding
et al., 2019], which has shown encourag-
ing results in simulation. | hope our ex-
tensions to such methods will enable us to
represent more complex, desirable param-
eterized skills (such as throwing a basket-
ball into a hoop at a specific location) than
button-pressing or peg-insertion.
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