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Learning Deep Goal-Parameterized
Robotic Skills from Demonstration

Introduction
It is often difficult to manually program even
simple skills for robots: commanding a robot
requires sending a certain precise current to
each motor, which is especially complicated
when a set of motors within an arm must
work in unison to achieve a complicated
movement. Learning from Demonstration
(LfD) is a promising direction of research for
robots to learn real-world skills directly from
observing demonstrations. LfD allows non-
expert operators to program skills simply by
demonstrating them many times. Further-
more, these learned skills are more general:
they are able to handle slight variations of
a task; such as if an object to be picked is
slightly misplaced.
However, many contemporary LfD ap-

proaches train skills that are unable to target
a specific goal from many possible choices.
For instance, such approaches are unable
to target a specific button within a grid. In-
stead, these approaches would train a dif-
ferent skill for every button. This requires
a lot of data (approximately 30 minutes of
demonstration data per skill [Zhang et al.,
2017]) that is usually infeasible for real-
world situations.
To combat this issue, I helped propose a

method that learns skills that are parameter-
ized by a goal-parameter (τ ) such that alter-
ing τ correctly alters the skill. In the button-
pressing scenario, instead of training a new
skill for each button, we train one general
skill that adapts itself depending on where
the button is (τ ), much like how a human
might learn this skill. This enables a robot
to press a new button (that it hasn’t seen in
demonstrations) simply by being given the
button’s goal-parameter.
This work directly builds on recent suc-

cessful approaches to LfD. Zhang et al.

[2017] and Levine et al. [2016] used Deep
Neural Networks (DNN’s) to approximate
functions mapping from a robot’s sensor in-
put to the expert’s action. These DNN’s are
able to learn complicated real-world tasks
(such as block-stacking) from demonstra-
tions. I proposed and helped implement
a novel DNN architecture that builds di-
rectly on this success by adding a goal-
parameterization (τ ) variable as an input to
Zhang et al. [2017]’s DNN architecture. I
then designed and helped run experiments
on a variety of simple tasks and representa-
tions for τ to evaluate our method’s perfor-
mance empirically.

Methodology
In an effort to evaluate our algorithm, I de-

signed several experiments in three sepa-
rate domains: a 2D simulation of the button-
pushing task, a 3D button-pushing task with
a physical robotic arm and finally a 3D peg-
insertion task with a different robot arm.

Figure 1: Views from our experimental setups

2D Button Simulation
Our experiments in this domain aimed to an-
swer the following questions:
1. How does our method’s performance

compare to the state-of-the-art?
2. How does the representation chosen

for the goal-parameterization (τ ) affect
our method’s performance?

3. How does our method’s performance
change with the number of different
goal-parameters (values for τ ) provided
during training?

To answer these questions, I designed
a 3×3 grid of blue squares representing
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buttons and a black circle representing the
agent, shown in Figure 1. I then collected
100 expert trajectories for each square
where the agent began at a random po-
sition along the right wall and followed a
randomized path to the specific square. I
helped train our DNN on random subsets of
squares in our grid. For every random sub-
set, we evaluated our DNN’s median perfor-
mance on 100 trials for each button. A trial
was counted as a success only if the agent
stops at the correct blue square.
I helped perform the above experiment

for various versions of our DNN. One
version did not take τ as an input parameter
and was thus equivalent to the state-of-the-
art architecture from Zhang et al. [2017].
Another version used an unstructured
representation for the goal-parameter to
study how structure in the choice of rep-
resentation for τ affects our performance.
Specifically, it used a one-hot vector where
a goal corresponded to a randomly-chosen
index of a nine-dimensional vector (as there
are nine possible goals). Finally, I tested
version of our model that used the struc-
tured representations for τ , specifically the
button’s pixel location within the image as
τ or its row-column index pair [for example
(1, 1), (1, 2), etc.].

3D Robot experiments
In this domain, I aimed to investigate

whether our method would work robustly on
real-world robotic tasks. I used a KUKA
robot arm to press buttons on a 3D, 4 × 4
button panel pictured in Figure 1. Similar
to an experiment from our 2D Button Sim-
ulation Section, I parameterized our button-
grid with a row/column tuple of the button’s
location on the grid. For training, I col-
lected 100 trials of the robot’s end-effector
beginning at a random position and follow-
ing a straight line to the specified button.
The end-effector’s final position was varied

with noise distributed normally such that the
robot would press the button differently each
time.
For this experiment, I used specific sub-

sets of buttons that had been found to gen-
eralize well in our two-dimensional simula-
tion. After having trained our DNN on the
data, I evaluated this learned policy by aver-
aging three attempts of the robot attempting
to press the button.
I helped repeat the same experiment on

a peg-insertion task (depicted in Figure 1)
to study whether our method can perform
a task that requires significantly more pre-
cision.

Results
2D Button Simulation
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Figure 2: Results from the 2D simulation domain

From Figure 2 above, one can infer the
following answers to questions posed in the
2D Button Simulation Methodology Section:

1. Our method performs significantly bet-
ter than the existing state-of-the-art.
The ’no tau’ curve’s success percent-
age drops to a relatively consistent 0
for any number of goals greater than
1. This is almost certainly because the
state-of-the-art method doesn’t take τ
as an input and thus cannot target spe-
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cific goals when trained on more than
one goal. Instead, it learns to average
between the goals seen during training.

2. The representation chosen for τ affects
our DNN’s performance rather signif-
icantly. Both the row/column index
parameterization (index tau) and pixel
parameterization (pixel tau) achieved
much higher success percentages
when trained on fewer goals than
the one-hot vector parameterization
(onehot). This is probably because τ
varies inconsistently for the one-hot
parameterization and thus the DNN is
only able to target goals already seen
during training (hence, the observed
straight-line trend).

3. Regardless of the structured param-
eterization chosen, our DNN’s perfor-
mance improved with the number of
goals seen during training. For the in-
dex and pixel parameterizations, the
average success percentage reached
100 after training on just 4 of the 9 pos-
sible goals in the grid.

3D Robot experiments
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Figure 3: Results from our robot experiments

Figure 3 illustrates that our DNN is
able to solve both targeted button-pressing
and peg-insertion tasks remarkably well on

robots. For both tasks, our DNN is able
to learn to generalize to target all possible
goals without the need to train on all 9 goals.
Interestingly, our method performed better
on the peg-insertion task even though it re-
quired more precision and had a smaller
amount of training data. I hypothesize that
this is because there was more noise in
the robot’s motion for the button-pressing
task, leading to a more imprecise policy that
would narrowly miss specific buttons. In-
deed, we observed this qualitatively.

Future Work
I hope to deepen this line of work in the
future. Specifically, I hope to extend our
idea of goal parameterization to other LfD
frameworks; such as that adopted by [Ding
et al., 2019], which has shown encourag-
ing results in simulation. I hope our ex-
tensions to such methods will enable us to
represent more complex, desirable param-
eterized skills (such as throwing a basket-
ball into a hoop at a specific location) than
button-pressing or peg-insertion.
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